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Detailed musculoskeletal models have provided insight to the
research community [1] but remain challenging to use in a
clinical setting. Effective methods need to be developed to
fit detailed musculoskeletal models to a specific subject be-
fore they can be employed in routine clinical work. However,
not all clinical applications require a model with a one-to-one
correspondence to the musculoskeletal system.

In this work we present an anthropomorphic model of a hu-
man that is actuated by a set of muscle-torque-generators
(MTGs). The strength of an MTG can be fit to a specific sub-
ject using measurements of maximum-voluntary-contraction
(MVC) at each joint. Although the MTGs cannot be used
to estimate bone-on-bone contact forces, nor muscle fiber
lengths, they can be used as part of an optimal-control-
problem (OCP) to predict the motions, ground forces, and net
joint torques of a subject’s gait.

Our long-term goal is to improve the design and fitting of
orthoses to children with pathological gait. Gait pathology
is complex, and so we are motivated to first test this approach
in a typically developing child. We compare our results to the
experimental data of Schwartz et al. [2] for evaluation.

1 Methods

We model the human body as a 10 degree-of-freedom pla-
nar mechanism (Fig. 1). Foot-ground contact is modeled us-
ing kinematic constraints between the 2 points of each foot
and the ground such that the normal forces are positive. The
torque-angle fA(θ) and torque-velocity fV(ω) characteristics
of the MTGs are expressed as C2 continuous 5th order Bézier
splines that have been fitted to the dynomometry data of An-
derson et al. [3]. These characteristic curves are used to eval-
uate muscle torque
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where a is the muscle activation. We use Thelen et al.’s [4]
model of muscle activation
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where e is electrical excitation from the nervous system. Win-
ters and Stark’s [5] data have been used to set the activation
(τA = 0.011) and deactivation (τD = 0.068) time constants.
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Figure 1: A 10 degree-of-freedom sagittal plane gait model and
the characteristic curves that define the torque-angle (left
column) and torque-velocity characteristics (right col-
umn) of the muscle-torque-generators.

The geometry and inertia of the model is fitted to a typi-
cally developing child (height 1.26 m, weight 25.9 kg) using
Jensen’s regression equations [6]. The strength of the model
has been set using the maximum-voluntary-contraction data
of Eek [7]. The values for τ M

o for each joint

Joint τ M
o Ext. (Nm) τ M

o Flex. (Nm)
Hip 49 34

Knee 36 19
Ankle 39 13



have been found using the joint angle θ and τ M from Eek et
al.’s data, by setting a = 1, and solving Eqn. 1 for τ M

o . We
have set the strength of the lumbar joint to be equal to the hip
as we lack data for this joint.

To predict the walking pattern of the model we formulate a
multi-phase optimal-control-problem (OCP) with the goal of
minimizing

min
x(·),u(·),ν

∑
4
1
∫ ν j

ν j−1 a(t)T a(t)dt

r(T )
(3)

the integral of activation-squared-per-distance-traveled across
all 4 of the problem phases. Dividing by the distance traveled
r(T ), provides the impetus for moving forward, as without
this term the model has no reason to move. This problem is
solved across 4 phases (single stance: flat-foot, and toe-only
contact; double stance: heel-toe, and toe–flat-foot contact)
using the direct multiple-shooting method [8] implemented in
the software package MUSCOD-II [9]. The vector of phase
switching times ν is free to vary during the solution process as
is the total duration T . Note that no experimentally measured
kinematics nor ground forces appear in the OCP which makes
this approach well suited for predicting gait patterns.

2 Results & Discussion

The kinematics of the model agree best at the hip, moder-
ately well at the knee, but are different from the experimen-
tal data at the ankle (Fig. 2A-C). The normal ground forces
have a similar magnitude and timing as the experimental data,
but have high frequency content that is not present in the ex-
perimental records (Fig. 2D). The pattern in kinematic error
leads us to believe that the foot model is responsible for some
of the differences between the model’s gait and the experi-
mental data. Despite these errors, we are encouraged by the
similarity of the model’s gait to the data given that we are
using simplified muscles. We are presently working to con-
struct a more accurate foot-ground contact model to improve
the kinematics and ground forces of the model’s gait.
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Figure 2: Kinematics and ground forces of the OCP solution for
the left and right legs (blue and red lines respectively)
plotted against normative data from Schwartz et al. [2].
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